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Abstract Over the last decades, diverse modelling approaches have been used to 

understand insect behaviour and population dynamics in agricultural landscapes and 

to improve our ability to manage crop pests. When there are too many parameters 

used to define insect behavioural reproductive strategies and environmental charac-

teristics, standard modelling tools become mathematically intractable, and so-called 

Monte Carlo computer-assisted simulation methods can be developed instead. Most 

of the time, simulations are done in spatially defined environments; hence, these 

simulations are usually said to be ‘spatially explicit’. Such approaches can be 

coupled with numerical tools to find the parameters that optimise some pre-defined 

objective criteria, such as fitness output or pest control efficacy. Through examples, 

this chapter will present these methods and how they can help us to understand 

insect behaviour and their populations, and thus to potentially optimise pest control 

strategies. 

Keywords Monte Carlo · Simulation · Pest control · Natural enemies · 

Stochasticity · Insect behaviour · Biological control 

3.1 Introduction 

Theoretical models developed to understand animal, and especially insect behaviour 

over the last decades, have followed a variety of approaches. Mostly these models 

are based either on the aim to understand the demographic trajectories – in both 

time and space – of the species studied or on trying to find optimal reproductive 

strategies adopted by individuals in different environmental situations (Godfray, 
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1994; Wajnberg et al., 2008). In this last case, the modelling techniques used were 

borrowed from optimisation theory (Houston & McNamara, 1999). 

Most models are sufficiently simple and tractable to be solved using standard 

optimisation tools. However, in an increasing number of situations, the problems 

that need to be addressed are of an increasing complexity and are difficult to be 

solved analytically (Hoffmeister & Wajnberg, 2008). For example, these models can 

now take into account changes in the state of the animal during its resource foraging 

time using so-called stochastic dynamic programming models (SDPs; Clark & 

Mangel, 2000). In addition, interactions with competitors that are also trying to 

maximise their reproductive strategy can now be considered using so-called game 

theoretical models (Maynard-Smith, 1982). 

For an increasing number of questions, problems are becoming far too compli-

cated to be solved with these modelling techniques, and other, computer-assisted 

tools must be used instead. These models are based on so-called Monte Carlo 

simulation approaches. These are currently the only powerful tool available to 

tackle problems in which we need to consider situations defined by many different 

parameters (and/or their interactions), and especially if stochasticity (e.g. variation 

in the environment in which the simulated animals forage for resources) needs to be 

considered. The aim of this chapter is to present these simulation methods, to see 

how they can be implemented in computers, how their results can be analysed, and 

how optimised solutions can be identified. 

Monte Carlo methods were initially developed in the 1940s, when the first 

fast computers became available. They are based on repeated random sampling to 

collect numerical results. Such simulation techniques are frequently used in a variety 

of fields, including physics (e.g. to study interacting particle systems), chemistry 

(e.g. to study molecule interactions), engineering (e.g. to study fluid dynamics or 

understanding variation in microelectronic circuits), and climate change dynamics. 

More recently, such methods started to be used in the field of ecology (Giró et 

al., 1985, 1986). The name ‘Monte Carlo’ was coined by the physicist Nicholas 

Metropolis to refer to the Monte Carlo casino in Monaco in which a significant 

amount of numbers is continuously drawn randomly (Metropolis, 1987). 

In such models, the trajectory of each individual is followed in time and/or in 

space, so these models are usually called individual-based models (i.e. ‘IBM’) and, 

in the usual terminology, individuals are sometimes called ‘agents’, so these models 

are also sometimes called ‘multi-agent models’ or ‘multi-agent-based simulation’ 

(i.e. ‘MABS’). Despite being usually conceptually and algorithmically simple, the 

computational cost associated with Monte Carlo simulations can be staggeringly 

high since getting accurate numerical outputs usually requires many replicates to be 

run. Hence, these methods became progressively more popular with the increasing 

availability of powerful computers and especially with the capability nowadays to 

access to local or even worldwide computer grids enabling the running of several 

replicates on different computers at the same time (see below). 

Of course, like any other modelling tool, the process being simulated with these 

Monte Carlo methods is a simplification of the real situation we are endeavouring to 

understand. However, since many rules can be added to the simulation framework,
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the obtained results are generally closer to reality than those produced by other 

modelling approaches. 

3.2 An ‘Appetiser’ 

In this section, I present a simple didactic example to explain the general framework 

used to build a Monte Carlo simulation model in the field of ecology. The idea is to 

simulate the behaviour of a single parasitoid female foraging for hosts distributed 

in patches in a 2D space. The space is a 500 × 500 cell grid and the location of 

the hosts over the grid is drawn randomly using two steps. The locations of host 

patches are first randomly drawn all over the grid. It was arbitrarily decided that the 

number of patches represents 4% of the total number of hosts present in the grid. 

Each patch contains the same number of hosts, whose location is then drawn using 

a Normal distribution centred on the location on the patch each host belongs to and 

with a standard deviation (SD) of 30 cells. This produces reasonable levels of host 

aggregation (see Fig. 3.1 for an example). 

A single parasitoid female is ‘released’ in the centre of the grid and moves 

following a discrete time process. At each time step, a linear speed is drawn from 

a Normal distribution with a mean of 5.0 and a SD of 2.0 cells, and an angular 

speed (direction) is also drawn from a Normal distribution with a mean equal to the 

angular speed used in the previous time step and a SD of 0.9424 radian (i.e. 54.0 

degrees). For the first time step, the mean direction is drawn randomly between 0.0 

and 2π . During its walking process, the female can perceive the nearest unattacked 

host from a distance of 80 cells (i.e. reactive distance; Roitberg, 1985; Bruins et al., 

1994) and, if a host is perceived, the angular speed in the next time step is in the 

Fig. 3.1 An example of the 

simulated walking behaviour 

of a single parasitoid female 

foraging for hosts having an 

aggregated distribution in a 

2D space; 300 hosts are 

available. The female is 

released in the centre of the 

grid and the simulation stops 

when the female reaches the 

border of the grid. White and 

black circles represent 

unattacked and attacked 

hosts, respectively
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direction of this nearest host. Following this process, if the female gets closer than 

5 cells to this targeted host, its location becomes this host location and the host is 

considered to be attacked. Finally, the simulation stops when the female reaches the 

border of the grid. Figure 3.2 gives the flowchart of the entire simulation process and 

Fig. 3.1 provides an example of the corresponding walking pattern obtained when 

300 hosts are available. 

Fig. 3.2 Flowchart of a Monte Carlo simulation model used as an example to simulate the walking 

behaviour of a single parasitoid female foraging for hosts exhibiting an aggregated distribution in 

a 2D space
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After running each simulation, we can compute – as an estimation of the ability 

of the foraging parasitoid female to produce progeny (i.e. its fitness) – the number 

of hosts discovered and attacked per time unit. The model specifically depends on 

two important parameters defining the walking strategy to the simulated individual: 

(1) the mean linear speed defining the Normal distribution in which the distance 

travelled at each time step is randomly drawn, and (2) the SD of the angular speed 

defining the Normal distribution in which the direction of the animal is also drawn 

at each time step. The smaller this SD, the more the animal walks in a straight line. 

This model was run with different mean linear speeds, ranging from 5.0 to 20.0, 

with a step of 1.0 cell, and different SD of the angular speed, from 0.0 to 0.6, with 

a step of 0.05 radian. In each case, 200 replicates were run, and the average values 

obtained are shown in Fig. 3.3. As we can see, there are some intermediate values 

of the mean walking speed that maximise the number of hosts a foraging female 

discovers and attacks per time unit. This makes sense since females walking slowly 

will take more time to find hosts to exploit, while females walking more rapidly will 

miss hosts, losing foraging time. Also, for the conditions used in the simulation, 

smaller SD for the angular speeds (i.e. walking more in a straighter line) leads the 

females to increase their rate of host attack efficiency. As is shown in Fig. 3.3, there 

Fig. 3.3 Average fitness (i.e. number of hosts discovered and attacked per time unit), obtained by 

running the simulation model presented in Figs. 3.1 and 3.2, 200 times each for different values 

of the mean linear speed (expressed in cell unit) and the SD of the angular speed (expressed in 

radian). The grey surface is a fitted local regression. The arrow shows the value of the parameters 

(i.e. linear speed = 12.29 cells; SD of angular speed = 0.13 radian) that maximises the overall 

fitness output of the simulated females, as computed with a genetic algorithm (see the explanation 

in the text below)
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is a way to find the value of these two parameters that maximises the number of 

attacks per time unit. This will be presented later in this chapter. 

As explained above, this is a simple example to present how a Monte Carlo 

simulation can be conceived and how the results can be presented and discussed. 

More generally, the simulation framework usually depends on several (usually 

more than two) parameters that are called ‘state parameters’ (here the mean linear 

speed and the SD of the angular speed). These parameters are then combined into 

the simulation framework to produce a so-called objective function that produces 

an output criterion to be optimised (here the number of hosts discovered and 

attacked per time unit). Depending on the scientific problem addressed, this can 

be the number of progeny produced, the pest control ability of a biological control 

agent, the economic productivity/profitability of a crop, etc. (see, e.g. Plouvier 

& Wajnberg, 2018). Figure 3.4 gives a diagrammatic representation of a possible 

general framework of such a process. 

Fig. 3.4 Diagrammatic representation of the development of a Monte Carlo simulation process. 

In this example, the simulation model is based on three parameters that have different distributions 

(from left to right: Normal, Poisson, and Exponential). Randomly drawn values of these three 

parameters are used in the objective function simulating the situation studied, leading to produce 

an output criterion, and the process is replicated multiple times to collect average results, with their 

variance, to produce graphs, etc., and thus to understand the predictions of the model
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3.3 Random Number Generators 

Monte Carlo simulations are similar to ‘random experimentations’. To run each 

simulation, as this is the case in the example described above, we need to draw 

a large amount of random numbers. In the first simulation approaches that were 

developed, these random numbers were generated using manual techniques, such as 

flipping a coin and spinning a roulette (Rubinstein & Kroese, 2017). These methods 

were rapidly abandoned for at least three reasons: (1) the manual methods were 

far too slow for running advanced simulation models; (2) the generated sequences 

could not be reproduced; and (3) the generated sequences obtained were not always 

truly random. Nowadays, sequences of random numbers are generated using simple 

deterministic algorithms that can be easily implemented in computers. Hence, the 

corresponding generators are rather called ‘pseudo-random’ (Rubinstein & Kroese, 

2017), and they are all built to produce sequences of numbers that are supposed to 

be uniformly distributed between 0.0 and 1.0. 

Such pseudo-random algorithms must satisfy a certain number of properties 

for them to be ‘random enough’. They must pass a series of statistical tests 

demonstrating that they actually produce random numbers that are uniformly 

distributed in the [0, 1] interval. Also, the random numbers generated must be 

independent, that is, a value in the generated sequence must not be related to the 

previous one(s). Since the corresponding computation is based on a sequence of 

numbers that use finite precision arithmetic, the sequence will repeat itself with 

a finite period, but this period must be as long as possible, and it must be much 

longer than the amount of random numbers needed for the simulation. Finally, as 

we will see below, these pseudo-random algorithms are computed from a starting 

seed, but both the randomness and the period must not depend on the initial seed 

used. Nowadays, most programming languages provide a build-in pseudo-random 

number generator, but not all of them accurately conform to the properties listed 

above, and they thus cannot all be used for scientific applications. 

Just to make this a bit more concrete, the simplest methods that are used 

to generate pseudo-random sequences of numbers are called linear congruential 

generators, and were initially proposed by Lehmer (1951). Succinctly, they are 

based on the following recursive formula: 

. Xt+1 = aXt + c (mod m) .

The initial value, X0, is called the seed, and a, c, and m are positive, integer 

constants. The expression ‘mod m’ means that, at each step t, the expression aXt + c 

is divided by m and the remainder is the generated value used for the next step. 

Careful choices for a, c, and m produce sequences of pseudo-random numbers 

that pass most of the statistical tests for uniformity, randomness, and independence 

mentioned above. A good example is the pseudo-random generator described by 

Lewis et al. (1969) with a = 74, c = 0, and m = 231 − 1. However, such linear
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congruential generators are not frequently used anymore since they usually no 

longer totally meet the requirements of Monte Carlo simulation applications (see 

L’Ecuyer & Simard, 2007). Other methods are used, but their general frameworks 

are still based on linear recurrences like in the methods described above. The 

most successful and widespread one is called MRG32k3a and has been proposed 

by L’Ecuyer (1999). This is the pseudo-random generator currently implemented 

in most scientific computing languages, for example, in the R statistical and 

programming language (R Core Team, 2020). An implementation of this pseudo-

random generator in C can be easily found online. 

The tricky point regarding the use of these pseudo-random generators is to find 

a seed to start a Monte Carlo simulation. In very rare cases, the seed should remain 

the same between runs, and the generator will then produce the same sequence 

of random numbers. For example, this will be useful when there is a need to 

correct mistakes in a computer programming code being developed. However, in 

the vast majority of the cases, the seed must be different for each run of the 

simulation in order to generate independent replicates. In many applications, the 

system time of the computer in which the simulations are launched is used as 

a possible seed. For example, on computers running under the Linux operating 

system, such system time is expressed as the number of milliseconds that have 

elapsed since the 1st of January 1970 at 00h00m00s. Hence, since different runs 

of the same simulation will usually not start during the same millisecond, the 

seeds used will be different. Such a procedure, however, poses a problem since 

Monte Carlo simulations are now becoming more and more based on intensive 

computations that require long computation times. In such cases, the simulation runs 

are now frequently distributed on local or even worldwide computer grids. These are 

widely distributed, interconnected computers used to reach a common goal. In this 

case, there is a higher chance that several replicates will start at exactly the same 

time, and the corresponding replicates consequently will not produce different and 

independent results. Another method must thus be used to define the seed in each 

run of a simulation. On all computers running under the Linux environment, there 

is a special file that can be used for this. Its name is ‘/dev/urandom’ and it gathers 

the environmental noise, for example, coming from device drivers. This noise can 

be read directly to generate possible seeds to launch the pseudo-random generator 

in each specific simulation run. Several works propose more advanced methods to 

set up the seeds in this case (see, e.g. Maigne et al., 2004). 

3.4 Parameters and Their Statistical Distribution 

Upon designing a Monte Carlo simulation model, two sets of parameters are usually 

considered. As seen above, state parameters are those on which simulations are 

based, and are the ones we vary when the outputs of the model are analysed (see 

the next section). The other parameters are sometimes called ‘forcing parameters’ 

and are used to define external influences acting upon the simulation process being
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addressed. In the example presented above, the state parameters of interest are the 

linear speed and the angular speed of the walking simulated females foraging for 

hosts to attack, while the forcing parameters are the total number of hosts and their 

spatial distribution in the environment. 

State parameters have their own statistical distribution from which their values 

must be drawn, since Monte Carlo simulations are based on stochastic processes 

that are repeated multiple times. Such simulation processes are thus based on a 

statistical framework, and these methods are sometimes used to statistically estimate 

parameters. This is what is done, for example, when bootstrap techniques are used 

to estimate the robustness of statistically estimated phylogenetic trees (e.g. Augusta 

de Moraes & Selvatti 2018). 

In this section, we will see how pseudo-random generators (that are producing 

random numbers uniformly distributed in the [0, 1] interval, as we have seen above) 

can be used to draw sequences of random numbers from any kind of statistical 

distribution. There are different methods that can be used for such a purpose. The 

simplest one is called the inverse-transform method. Let us say we want to draw a 

value x from a statistical distribution having a cumulative distribution function F(x). 

By definition, F(x) is the probability that a variable X takes a value less than or 

equal to x. Such cumulative distributions always represent monotonically increasing 

functions from 0.0 to 1.0, as seen in two examples shown Fig. 3.5. These functions 

can be derived based on theoretically known distributions or they can be purely 

empirical. Once we have such a cumulative distribution function F(x), the inverse-

transform method consists of drawing a random value U uniformly from the [0, 1] 

interval with a pseudo-random generator, and to deliver the value X that corresponds 

to the inverse function F−1(U), written as: 

. F−1(U) = inf {X : F(x) ≥ U} .

This equation means that we are looking for the minimum value of x that satifies 

the equation F(x) ≥ U. Figure 3.5 shows two examples of this procedure, one with a 

semi-quantative trait and another with a quantitative, continuously distributed trait. 

A simple application of the inverse-transform method can be seen when we want 

to generate a random variable from a Bernoulli distribution. This distribution is a 

discrete distribution that takes the value 1 with probability p, and the value of 0 with 

probability q = 1 − p. This is frequently used in Monte Carlo simulation models 

when dealing with binary variables, for example to randomly draw the sex of an 

individual (male or female), whether a host is found or not by a parasitoid female, 

whether a host can escape or not from a parasitoid attack, etc. The cumulative 

distribution function in this case is similar to the one shown in the left panel of 

Fig. 3.5, but with only two possible outcomes. Therefore, the procedure to draw 

a random number having a probability p to appear (e.g. to decide if a host is 

attacked on not) is simply the following: first generate a random value U uniformly 

distributed in the [0, 1] interval. Then, if U ≤ p return 1, otherwise return 0.
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Fig. 3.5 Two examples of the inverse-transform method, with a semi-quantitative trait (left panel) 

or a continuously distributed trait (right panel), that can be used to draw a random number from any 

kind of statistical distribution. In both cases, the cumulative distribution function F(x) is presented. 

A value  U is drawn uniformly from the [0, 1] interval, and the delivered value X is  given by the  

inverse function F−1(U). In the left panel, the pi values are the frequencies in which each value 

xi is or can be observed. Please note that the left panel could also represent the distribution of a 

purely qualitative trait. In this case, the method will work a similar way 

The inverse-transform method can be applied for any kind of statistical distri-

bution. For some of them, which are theoretically well known, more advanced (i.e. 

more efficient) methods are sometimes used instead. Boxes 3.1, 3.2, and 3.3 give the 

usual algorithmic procedures used to draw random numbers from an Exponential, a 

Normal, or a Poisson distribution, respectively. 

Box 3.1 

Drawing random numbers from an Exponential distribution. 

Exponential distributions describe the distribution of times between events. 

In Monte Carlo simulations, such a distribution can be used, for example, to 

randomly draw the time elapsed between two host attacks by a parasitoid 

female. Exponential distributions are defined by only one parameter, the 

so-called rate parameter λ, and the expected value (i.e. the mean of the 

distribution) is known to be λ−1. To draw a random number in an Exponential 

distribution having a rate parameter λ, the following algorithmic procedure 

can be used: 

• Choose a parameter λ (λ > 0);  

• Randomly draw a value U from a Uniform distribution between 0 and 1; 

(continued)
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Box 3.1 (continued) 

• Compute X = −  λ−1 ln (U); 

• Return X. 

If we want to draw a random number in an Exponential distribution having 

a mean µ instead, we just have to replace λ−1 by µ in the procedure above. 

Box 3.2 

Drawing random numbers from a Normal distribution. 

Normal distributions are very common continuous distributions that can 

be used to describe many quantitative traits. In Monte Carlo simulations, 

they can be used, for example, to randomly draw traits such as length, size, 

weight, or distance. There are several methods that can be used to generate 

normally distributed random values. The most well known one is the so-called 

Box-Muller method that allows one to simultaneously draw two random, 

non-correlated values from a Normal distribution having a mean of 0 and a 

variance of 1. This works according to the following algorithmic procedure: 

• Randomly draw two independent values U1 and U2 from a Uniform 

distribution between 0 and 1; 

• Compute and return two random numbers X1 and X2 using the following 

equations: 

. 

{

X1 = cos (2πU2)
√

−2 log (U1)

X2 = sin (2πU2)
√

−2 log (U1)
.

If we want to draw numbers from a Normal distribution having a mean 

µ and a variance σ 2 instead, the obtained values must be additionally 

transformed as µ + X1σ and µ + X2σ , respectively. 

Box 3.3 

Drawing random numbers from a Poisson distribution. 

Poisson distributions are used to describe the discrete distribution of the 

number of events appearing during a given time interval. In Monte Carlo 

simulations, they can be used, for example, to randomly draw the number of 

eggs laid by a parasitoid female, the number of females a male can mate, etc. 

Poisson distributions are based on a single parameter λ > 0 that corresponds 

(continued)
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Box 3.3 (continued) 
to the mean of the distribution. The following algorithmic procedure can be 

used to draw a random number from a Poisson distribution with mean λ: 

• Choose λ (λ > 0);  

• Let n = 0 and a = 1; 

• While a ≥ e−λ do: 

. 

∣

∣

∣

∣

∣

∣

Draw a value U from a Uniform distribution between 0 and 1

a = aU

n = n + 1

• Compute X = n − 1; 

• Return X. 

Other algorithmic procedures are available to draw random numbers from any 

kind of distribution. There are even procedures that are available to draw random 

vectors of values from multidimensional distributions when several (e.g. correlated) 

values are needed in aMonte Carlo simulation. The interested readers should consult 

available textbooks, for example, Rubinstein and Kroese (2017). 

3.5 Analysing the Obtained Results 

Once the results of all simulations are collected, there is the need to analyse them 

both to check whether the computations produced suspicious outputs (pointing 

to some mistakes in the computer programming code) and to understand the 

messages delivered. For this, the results of each simulation run (or only averages 

and variances) are first saved. Then standard statistical descriptive tools can be 

used, such as summary statistics (means, ranges, variances, correlations, etc.). In 

this respect, graphic outputs are always needed, such as histograms, or simple plots 

showing the effects of different values of the forcing parameters on the mean and 

variance of the state parameters. Figure 3.3 gives an example of such a graph. 

Another related descriptive tool that can be used is termed ‘sensitivity analysis’. 

The goal is to quantify the sensitivity of the model to changes in specific parameters. 

For this, the model is re-run fixing all parameters but the one we are interested in. 

For that one, different values are used sequentially, and changes in the corresponding 

average outputs are analysed to quantify the importance of this parameter on the 

model’s outputs. Repeating such a procedure for all parameters of the model can
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lead to a better understanding of the scientific question for which the Monte Carlo 

model has been designed. 

Once all results are collected and described, it is tempting to perform statistical 

analyses to test the effect of, for example, a variation in one or several forcing 

parameters on the values of the state parameters of the model. Several authors 

take this approach, which is also sometimes requested by referees or editors of 

international journals. Although this is a continuously debated question, it is not 

valid to perform statistical comparisons on simulated data sets. Statistical tests are 

designed to be used when we do not know the real values of the parameters we are 

estimating, and parameter estimation should be done by sampling the populations. 

In this case, we need a statistical procedure (usually based on the parameters’ 

distributions) to compare them. In a simulation work, however, parameters such 

as means are explicitly known. We only have to run a sufficient amount of 

simulations to know them exactly. There is thus no distribution (since parameters 

are not estimated from some sampling procedures), and thus statistical comparison 

procedures are not needed. In other words, by running simulations several times, 

we always end up with a statistically significant test, since the standard errors will 

mechanically tend to zero. The only thing that can be done is to present effects, with 

the descriptive statistical tools mentioned above, discussing trends, etc. (see, e.g. 

White et al., 2014). 

3.6 Looking for Optimised Values 

For some scientific questions, we are willing to address using Monte Carlo 

simulations, and once the simulations have been run and the results obtained and 

analysed, we can go one step forward. We sometimes need to know what values of 

the state parameters maximise some pre-defined objective criterion. In behavioural 

ecology, for example, we would often like to identify the set of state parameters that 

define the behaviour of the simulated animals maximising the overall number of 

progeny produced. In defining an efficient biological control programme against 

a crop pest, we might alternatively be interested in identifying the value of the 

parameters that maximise the number of hosts killed per time unit or the crop 

production, etc. 

There are different numerical ways to achieve this goal. One popular method is 

the use of genetic algorithms. This approach is efficient, simple, and relatively easy 

to implement. The method was invented in the early 1970s to mimic the process of 

natural evolution (Holland, 1975; Goldberg, 1989) and has been used since then to 

solve several problems in the field of behavioural ecology and evolutionary biology 

(see, e.g. Sumida et al., 1990; Mitchell, 1998; Hoffmeister & Wajnberg, 2008; 

Ruxton & Beauchamp, 2008; Wajnberg et al., 2012; Hamblin, 2013; Wajnberg et 

al., 2013; Plouvier & Wajnberg, 2018). 

The main processes involved in a genetic algorithm are shown in Fig. 3.6. At  

the beginning, a set (or ‘population’) of possible solutions are drawn randomly,
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Fig. 3.6 Flowchart showing 

the essential components of a 

genetic algorithm (see text for 

explanations) 

using the procedures described in the sections above. The word ‘solution’ actually 

means a list of values for all state parameters (that are called here ‘genes’) 

of the Monte Carlo simulation problem. These are arranged sequentially along 

a so-called chromosome. Running the simulation model on each of the initial 

chromosomes leads to an estimate of their ‘fitness’ through the pre-defined objective 

function of the model. Then, pairs of ‘parents’ for the next generation are selected 

randomly in the initial population of chromosomes using a probability proportional 

to their fitness. Hence, chromosomes with higher fitness have a higher chance to 

contribute to the next generation. There are several methods to implement this. 

The interested reader can consult Hoffmeister and Wajnberg (2008) or Hamblin 

(2013) for additional explanations. Once the pairs of parents are identified, they 

may undergo crossing over events, which means that recombination is performed, 

like on real chromosomes in biology (Hoffmeister & Wajnberg, 2008; Hamblin, 

2013). Finally, each parameter (gene) of the new children obtained can pass through 

a mutation process that usually implies adding to their value an adjustment drawn 

from a Normal distribution having a mean of 0.0. Then, the new chromosomes 

(children) are used to build a new generation and the process is repeated until a 

stopping criterion is reached. Here again, several stopping criteria can be used. For 

example, the looping process can be stopped when a fixed number of generations 

have been completed (e.g. Barta et al., 1997; Wajnberg et al., 2013) or after  a fixed  

computation time. Usually, however, the performance of the genetic algorithm in 

producing an optimal solution is followed over the course of multiple generations, 

and the process is then stopped if a fixed number of generations has passed without 

a substantial improvement in the fitness of the best chromosome.
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Fig. 3.7 Optimised (with the use of a genetic algorithm) mean linear walking speed (expressed 

in cell unit; left panel) and SD of the angular speed (expressed in radian; right panel) maximising 

the fitness (i.e. number of hosts discovered and attacked per time unit) of simulated parasitoid 

females foraging in a 2D space for hosts present in different density, and having different spatially 

aggregate levels. The host aggregation level ranges from 0.0, indicating that hosts are randomly 

distributed, to 1.0, in which all hosts are clumped into a single patch. Increasing values of this 

parameter correspond to a decreasing number of host patches in the environment 

Such an optimisation procedure has been used for the simple didactic example 

presented in the first section of this chapter (simulating the walking behaviour of a 

single parasitoid female foraging for hosts having an aggregate distribution in a 2D 

space), and the optimal solution found is shown in Fig. 3.3. The same Monte Carlo 

simulation model was then run with different host densities, and with different host 

aggregation patterns in the environment, and a genetic algorithm was used in each 

situation to find the optimised linear walking speed and SD of the angular speed, 

which describes the tendency of the animal to walk on a straight line or not. The 

results obtained are presented in Fig. 3.7. They indicate that optimised parasitoid 

females foraging for hosts in a 2D space should walk slower and less on a straight 

line when there are most hosts available in the environment. When hosts become 

more aggregated, optimised females should also walk slower and less on a straight 

line. 

3.7 A More Advanced Example 

Plouvier and Wajnberg (2018) developed a Monte Carlo simulation coupled with the 

use of a genetic algorithm to find what biological and ecological features of natural 

enemies should optimise their pest control efficacy on a field crop. The economic 

income collected by the farmer when releasing biological control agents was also 

considered. For this, the model was designed to optimise a criterion corresponding
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to the total crop yield (expressed as plant biomass), taking into account damage 

done by the pest, minus the overall cost of producing and releasing natural enemies. 

The simulations were done using a spatially explicit framework simulating a field 

represented by a grid in which crop plants are grown in rows, one every second row. 

The state parameters optimised represented eight life-history and behavioural traits 

of the released natural enemies: (1) longevity (expressed as time steps before dying), 

(2) fecundity (expressed as the total number of eggs corresponding to the total 

number of hosts killed if the natural enemy is a solitary parasitoid), (3) pest attack 

rate, per time unit, (4) level of local intra-specific competition (i.e. interference) 

leading to a reduction in the pest attack rate, (5) pest handling time (expressed in 

time steps), (6) probability to move/disperse, and (7) the mean and (8) SD of the 

(Normal) distribution of the distance moved (both expressed in grid cell unit). Five 

forcing variables were analysed: (1) the number of sites in the field in which the 

natural enemies are released (1 vs. 2), (2) the number of individuals released (10 vs. 

20), (3) the timing of natural enemies release (6 vs. 10 time steps after the crop has 

been sown), (4) the cost of producing and releasing the natural enemy (200 vs. 300 

arbitrary units), and (5) the growth rate of the plant (r = 0.05 vs. r = 0.06). Finally, 

several other features were added to the model. For example, a negative trade-off 

between longevity and fecundity of the natural enemies was considered, as this is 

observed in real situations (see, e.g. Miyatake, 1997). The plant development has 

been modelled with an exponential growth function with a decreasing rate. Pests 

arrive on the crop at time step 5 (after the crop has been sown) and are distributed 

randomly over the entire crop. Natural enemies are attacking pests following a type 

II functional response (Holling, 1959), and they can disperse at each time step with 

a probability that increases with the local density of competitors, but decreases with 

the local density of pests. 

Briefly, the results obtained demonstrated that ideal natural enemies, that is, ones 

that optimise the income collected by the farmer using a biological control approach, 

should have a shorter longevity, and hence a higher fecundity. They should also have 

a lower pest handling time leading to increase the overall number of pests attacked 

on each plant. Finally, they should have a higher tendency to disperse when the local 

pest density is low. On the other hand, pest attack rate and the level of competition 

(i.e. interference) between natural enemies surprisingly appear to be less important. 

Results obtained also indicated that the more important ecological and 

behavioural features defining efficient natural enemies are correlated, demonstrating 

a kind of an optimised ‘behavioural syndrome’ (Sih et al., 2004a, b). Also, most 

of the optimised parameters actually had a bimodal distribution, indicating that 

there were actually two optimised pest control strategies. The first one, called 

‘incremental strategy’, corresponds to low pest handling time, associated to a low 

tendency to disperse. In this case, the natural enemies are ‘cleaning’ the plants from 

pests before going to another plant. The second one, called ‘decremental strategy’,
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on the contrary, is associated to a high pest handling time with a high dispersion 

tendency, corresponding to a natural enemy that attacks fewer hosts in a local area 

before leaving but covers a larger crop surface area. The ability of each of these two 

pest control strategies to perform well depends on the number of natural enemies 

released and on the number of release points (Plouvier & Wajnberg, 2018). 

3.8 Conclusion 

Monte Carlo simulations have been demonstrated to be a very efficient modelling 

tool that can be used when the problems to be addressed are too complicated (e.g. 

based on too many parameters) to be handled with standard, analytical modelling 

approaches. In this respect, this chapter gives a general overview on how such 

a modelling framework can be implemented, for example using a programming 

language like C or C++, with minimum skill. There are currently some other 

computer languages that might sometimes be more convenient to use for developing 

such simulations with minimal programming effort. For example, in the R statistical 

and programming environment (R Core Team, 2020), there are built-in functions 

enabling users to draw random numbers from all basic statistical distributions, hence 

without having to code this explicitly. However, using such computer languages 

usually produce simulation models that need more computer time to run, and that 

are not easily distributed on several computers simultaneously. 

In this respect, another point that must be mentioned here is that computers are 

still regularly becoming more and more powerful and able to provide faster pro-

cessing times. Moreover, nowadays computers are interconnected through networks 

in local or even worldwide computer grids offering powerful computing resources 

providing a way to distribute simultaneously long-lasting simulations leading to 

delivery of results in reasonable times. Such distributed computer resources enable 

researchers to address highly complex scientific problems that are especially, but not 

only, developed to understand the ecology of systems involving agricultural pests 

and their natural enemies. 
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